Gijs van Esch | Embedded software
developer

Dirk van den Heuvel | Embedded systems
architect

TOPIC




2
An introduction to autopiloting
PX4 Autopilot
Running PX4 on the platform
4
The UAV/Robotics platform
5
Reading the sensors
Motor control
Remote control
Using PX4
Actual flying

9

Conclusion

10
About TOPIC Embedded Systems




AN INTRODUCTION TO AUTOPILOTING

Flying an Unmanned Aerial Vehicle (UAV), also referred to as a drone, introduces a typical
functionality requirements for the software stack of the controlling platform. For this white
paper a quadcopter UAV is taken as a reference to demonstrate autopilot functionality
integration in Linux.

For other drone constructions like flying wings, helicopters, regular airplanes or other flying
platforms similar requirements apply. When airborne, an UAV has to maintain a minimum level
of functionality to stay reliably in the air. In case of our quadcopter reference design, it must
remain in a stable position without active involvement of the operator. This is denoted as
hovering: maintaining the same position in a 3 dimensional space. To be able to hover, the
motors need to be controlled and sensors need to be read to determine position, movement
and environmental context. This is exactly the functionality an autopilot should implement.

In this paper an integrated platform is presented that implements the PX4 autopilot as part of an
experimental quadcopter drone concept. The heart of the system is the controller board, formed
by a compact but powerful and highly integrated processor board, running Linux. The paper will
address dependencies and implementation considerations with respect to autopilot
functionality.

A
2



PX4 AUTOPILOT

The PX4 autopilot is selected from a collection of Open Source autopilot projects, such as Paprazzi
UAV, ArduPilot, Dronecode and LibrePilot. The Dronecode project forms a platform where PX4 is
part of. Based on the initiatives around Dronecode, sponsoring by the Linux Foundations and
community focus, PX4 was chosen. PX4 was originally developed at the ETH in Zurich, but has
gained a world-wide support base. It provides a flexible set of tools for drone developers to share
technologies to created tailored solutions. It is supported by more than 300 global contributors
and is used by various well-known companies. As PX4 is part of the Dronecode project, it can
seamlessly integrate with other tools from this project, such as a communications protocol for UAV
systems (MAVLink) and a control station (QGroundControl).

RUNNING PX4 ON THE PLATFORM

The aim of the this effort is to implement the PX4 software stack on a Linux based processing
platform, the Xilinx Ultrascale+. This System-on-Chip (SoC) integrates a quad core ARM Cortex
A53 application processor, a dual core ARM R5 real-time processor, an ARM Mali400 GPU and
FPGA based free programmable logic. The aim is to run the autopilot on the A53 core to
investigate the real-time requirements, the performance behavior, as well as the system
integration complexity. Choosing the real-time processor would be more obvious, but the
additional software functionality on top of the autopilot, like path finding, obstacle avoidance
will also run on Linux based application processor. Integration within the same context
simplifies application development significantly.

The platform runs a Linux distribution on the A53 processor, kernel version 4.19. The build
environment used is the Yocto project in combination with OpenEmbedded. A specific build
recipe was to be developed for PX4 in order to incorporate the software stack on the Linux
platform. These Yocto recipes should be created in such a way that they point to the

source files or a personal github clone of PX4. The PX4 source files had to be altered in such a
way the PX4 Github is not accessed directly, but forked to a local branch. This recipe is
responsible for compiling the PX4 software and copying the correct files (binary, ROMFS and
posix-configs) to this image. When this is completed correctly a PX4 executable of the image is
available which enables PX4 to run on the platform.

The Yocto recipes solve the software dependencies for running PX4 on Linux, using the

abstracted sensors readings by the Linux drivers. This way a bridge is created between the
physical sensor readings and the sensor data format required by PX4 with a sample rate

compatible with the execution time of the PX4 control loop.



THE UAV & ROBOTICS PLATFORM

An autopilot like PX4 needs specific environmental, motion sensors
and user interfaces as well as motor drives for operating the dronein a
reliable manner as an output. Typical drone motors are brushless DC
(BLDC) motors. The selected Xilinx UAV & Robotics platform, physically
the size of an iPhone, has all the hardware integrated that is required
to fly autonomously:

¢ The Inertial Measurement Unit is a Bosch BMI088 which is a 6-axis
motion (3-axis accelerometer and 3-axis gyroscope) tracking
sensor.

e The applied low-power and low-noise Bosch BMM150 is a 3-axis
digital geomagnetic field sensor.

e Forenvironmental sensing, the Bosch BME680 is used. It has the
capability to measure the barometric pressure which can be used
for the altitude estimation as well as the environment temperature
and humidity.

¢ The low-power ZOE-M8B module uses the Global Navigation
Satellite System (BeiDou, GLONASS, GPS / QZSS) to receive
positional information.

The Xilinx UAV & Robotics platform integrates a System-on-Chip of
Xilinx. This Zynq Ultrascale+ ZUTEV is a heterogeneous multi-processor
core. It allows the integration of all required processing on a single
device. In addition to the autopilot, the low-level brushless DC motor
controller, the video pipeline for e.g. stereo vision and object
recognition, an integrated H264/265 video compression block,
dedicated processing power for path finding/plotting, software
defined radio as well as a machine learning (ML) or deep learning (DL)
are available on the platform. This reduces the need to implement
additional boards in the system and reduces the power consumption
significantly. However, the basic functionality of a drone is flying,
requiring a motor driver and controller as well as an autopilot to keep
the drone reliably airborne.




READING THE SENSORS

Based on the mentioned sensors on the board, the PX4 autopilot is able to control the brushless
DC motor drivers. The control loop takes the sensor readings with deterministic intervals and
derives from these readings the updated motor/motion control settings.

The sensors are connected to the processing system using SPI and 12C interfaces via the FPGA,
allowing for relative high data acquisition rates. Especially for stability purposes, this is
advantageous. The acquisition of sensor data is implemented on the platform using the Linux
industrial 10 subsystem and can be read either via libiio or file io. The decision was made to use
libiio as this is faster and more flexible than the file io concept. To get libiio operational, it is
important to include libiio as a dependency in the build recipe for PX4.

The sensor data should be published within PX4. There are some examples available within PX4
reference designs that show the overall structure. The drivers for the sensors are already
implemented as part of the standard board BSP. The main change is that the data has to be read
via libiio and scaled from the raw sensor data values into real, meaningful data. The calculations
to do this can be found in the data sheet of the sensors in combination with the PX4 data format
requirements. For details on PX4, have a look at https://px4.io/.

For the accelerometer and gyrometer the data is published within PX4 using the
px4_accelerometer and px4_gyrometer parameters. This ensures that the necessary
mathematical calculations, like the derivative and integral are performed correctly. The data of
the environmental sensor and magnetometer can be published directly.

The applied uBlox GPS module is supported by PX4 by default and only has to be enabled in
order to be read. This can be done by enabling the GPS in de sensor startup script, part of the
standard Linux driver. When all the sensors are correctly implemented and started within PX4
the data should be published on the parameters sensor_gyro, sensor_accel, sensor_mag,
sensor_baro and vehicle_gps_position. The data can be verified using the PX4 listener
functionality. A



MOTOR CONTROL

The motor controllers are implemented in FPGA
fabric. This allows full parallel operation of the
four motor current loops and related velocity
loops. A brushless DC motor controller IP block of
Qdesys is applied to implement the back-EMF
based low-level motion control. The outputs of
the FPGA are used to directly drive the power
stages of the motors. No additional control logic
is required. For the drone, standard power stage
driver modules are applied. The analogues motor
feedback signals are sampled, digitized and
acquired by the FPGA logic via an 12C bus.

The motors are controlled via the linux_pwm_out
module of PX4. In order to do so this output has

to be altered in such a way that the data format is
compatible with the Qdesys motor control driver.

REMOTE CONTROL

The last interface required is the user interface
via the remote control functionality. The drone
implementation can accept different radio
communication interfaces, including software
defined radio. In the implemented application
the interface runs over a WiFi connection. The
drone platform forms a WiFi access point. By
opening a secure shell (SSH) connection, the
drone can be controlled via terminal
commands from a PC, notebook, or mobile
device.

A




USING PX4

With the interface drivers in place the platform is ready to accept the PX4 implemented control
functionality. It is important to setup PX4 the correct way, matching the system requirements as
initially set out. The image below illustrates the functional flow of the typical PX4 control loop.

Position &
Attitude estimator

- . Attitude & rate

Sensors

Navigator Position controller Actuator
controller

Remote Control

e The data from the different sensors are sent to the sensors module, which will combine the
data from the different sensors in a single message.

e Thissingle message is then sent to the Position and Attitude estimator which can be either
EKF2 (Extended Kalmann Filter 2) or LPE (Local Position Estimator). For autonomous flying
the LPE offers the best performance. This consists for the LPE and attitude_estimator_q.

e Theresulting data is then sent to the Navigator, position controller and finally the attitude
and rate controller.

e The mixer in this case will be incorporated in the linux_pwm_out which will directly control
the motors.

The PX4 autopilot engine has been executed using a standard embedded Linux kernel (4.19).
One of the PX4 porting objectives was to determine how timing critical the real-time behavior
of PX4 is. The application runs without the real-time patch of Linux applied. As all the timing
critical interfaces are handled by the inherently real-time FPGA fabric, the PX4 autopilot code
only needs to run the control loop in real-time. The raw sensor readings are acquired
individually using the FPGA fabric and then down-sampled to the unified sample rate. This
dictates the heartbeat of the PX4 control loop.



ACTUAL FLYING

The autopilot is the core of the drone to be able to fly. To put this to the test, a drone is
constructed based on a:

e Tarot RC Iron Man 650 quad copter frame

e 4x PMOD motor power stages (L00W minimum each)
e The Xilinx UAV & Robotics platform

e 3SLiPo battery pack with sufficient capacity

The drone is controlled by sending positional setpoint commands to PX4 via a SSH terminal
connection over WiFi. Based on the sensor readings PX4 takes care that the displacement of the
drone from one positional setpoint to another is executed.

As expected, the initial flight was not perfect. This had to do with tuning of the BLDC motor
controller settings and the system PID control loop settings. Calculated parameters needed to be
tuned, depending on the actual system behavior. Especially the tuning of the roll, pitch and yaw
parameters of the PID control loop (MC_ROLLRATE_P, MC_ROLLRATE_I, MC_PITCHRATE_P etc.)
needed attention. The testing of the PX4 autopilot on top of an embedded Linux platform is
demonstrating sufficient quality and potential to apply the result in an industrial application
context.




CONCLUSION

This white paper described the successful porting and
testing of the PX4 autopilot software stack integrated using
embedded Linux on a dedicated drone platform. More in-
depth technical implementation details are available from
TOPIC.

Creating a Yocto/OpenEmbedded build recipe for Linux
integration needed specialized know-how, but was realized
with limited effort. Publishing on-the-fly sensor data for PX4
within Linux is a relatively straight-forward operation.
Running PX4 on a drone in practice rapidly provided the
required results. The require CPU performance to execute
PX4 is limited, leaving sufficient headroom to execute other
applications. Therefore, the implementation of PX4 allows
the addition of other software stacks to the system for e.g.
path planning, object detection and payload control
applications without expecting performance issues.

Further information on the UAV & Robotics platform can be
found at https://topic.nl/en/products/building-
blocks/autonomous-control-robotics.




=
=
oc
oo
e
£S

ABOUT TOPIC EMBEDDED SYSTEMS

“We make the world a little better, healthier and smarter every day”. Our mission statement
reflects exactly what we do: developing innovative systems for our customers. The way we do
that, is by combining our customers domain specific know-how with our expertise in
hardware and software development. This results in the most optimal product for our
customers. TOPIC has a strong background of more than 24 years in developing systems,
which can contain embedded-, application- and cloud software, FPGA code and PCB designs.
We help customers in different domains such as medical, imaging, machine control & safety.
With over 150 employees, we are a strong and established company with our headquarters in
Best, the Netherlands. TOPIC has an I1SO13485 (medical) certified Quality Management
System and adopted the Agile way-of-working for optimal interaction with the customer.

Premier Partnership with Xilinx | TOPIC is one of the few Xilinx Premier Alliance Partners in
the world and the only one in the Benelux. Our partnership with Xilinx started in 2009 and
since than we have been working closely together over the last years.

9 Materiaalweg 4, 5681 RJ Best, The Netherlands

D +31(0)499336979 u' info@topic.nl
\ www.topic.nl
-topic. linkedin.com/company/topic-embedded-systems




