
MCXL Reference Designs User Guide

MCXL Reference Designs User Guide

Created on: Mar 22, 2022

Created by: Johannes Schwenk

Page 1 of 12

© ARIES Embedded GmbH. The information contained in this document is strictly confiden-
tial. This document may not be copied, reproduced, translated, changed or distributed

without the written approval of ARIES Embedded GmbH

MCXL Reference Designs User Guide

CHAPTER

ONE

ABOUT THIS MANUAL

1.1 Imprint

Address:

ARIES Embedded GmbH

Schöngeisinger Str. 84

D-82256 Fürstenfedbruck

Germany

Phone:

+49 (0) 8141/36 367-0

Fax:

+49 (0) 8141/36 367-67

1.2 Disclaimer

ARIES Embedded does not guarantee that the information in this document is up-to-date, correct, complete
or of good quality. Liability claims against ARIES Embedded, referring to material or non-material related
damages caused, due to usage or non-usage of the information given in this document, or due to usage of
erroneous or incomplete information, are exempted, as long as there is no proven intentional or negligent
fault of ARIES Embedded. ARIES Embedded explicitly reserves the rights to change or add to the contents
of this Preliminary User Guide or parts of it without notification.

Chapter 1. About this manual Page 2 of 12

MCXL Reference Designs User Guide

1.3 Copyright

This document may not be copied, reproduced, translated, changed or distributed, completely or partially
in any form without the written approval of ARIES Embedded GmbH.

1.4 Registered Trademarks

The contents of this document may be subject of intellectual property rights (including but not limited to
copyright, trademark, or patent rights). Any such rights that are not expressly licensed or already owned
by a third party are reserved by ARIES Embedded GmbH.

1.5 Care and Maintenance

• Keep the device dry. Precipitation, humidity, and all types of liquids or moisture can contain minerals
that will corrode electronic circuits. If your device does get wet, allow it to dry completely.

• Do not use or store the device in dusty, dirty areas. Its moving parts and electronic components can
be damaged.

• Do not store the device in hot areas. High temperatures can shorten the life of electronic devices,
damage batteries, and warp or melt certain plastics.

• Do not store the device in cold areas. When the device returns to its normal temperature, moisture
can form inside the device and damage electronic circuit boards.

• Do not attempt to open the device.

• Do not drop, knock, or shake the device. Rough handling can break internal circuit boards and fine
mechanics.

• Do not use harsh chemicals, cleaning solvents, or strong detergents to clean the device.

• Do not paint the device. Paint can clog the moving parts and prevent proper operation.

• Unauthorized modifications or attachments could damage the device and may violate regulations gov-
erning radio devices.

1.6 Change Log

Revision Date Revised Comment
1.0 22.03.2022 js Initial creation

Chapter 1. About this manual Page 3 of 12

MCXL Reference Designs User Guide

CHAPTER

TWO

INTRODUCTION

The MCXL is an FPGA System-on-Module featuring the Intel Cyclone 10 LP FPGA. The two variants
MCXL-S and MCXL-H implement SDRAM or HyperBus technology (HyperRAM and HyperFlash) as mem-
ory for the FPGA respectively.

The reference designs demonstrate the implementation of an open-source RISC-V core running FreeRTOS
with TCP. Access to the HyperBus interface is provided via the SLL MBMC (HyperBus) IP Core. The
examples are also suitable as starting point for development.

This guide shows how to install the necessary requirements and how to run the RISC-V examples on the
MCXL.

Chapter 2. Introduction Page 4 of 12

https://github.com/ARIES-Embedded/mcxl-reference-designs
https://synaptic-labs.com/ip-mbmc3-main-product/

MCXL Reference Designs User Guide

CHAPTER

THREE

REQUIREMENTS

Note: As reference for this guide Linux Ubuntu 20.04 is used, other Linux distributions may work similarly.
While the toolchain can be used on Windows only limited support is available.

To evaluate the demos the following hardware items are required:

• One of the following SoMs:

– MCXL-H055BBB-I (10CL055YU484I7G)

– MCXL-S055BC-I (10CL055YU484I7G)

• USB-Blaster with 0.05” adapter

The following items are intended to be used by the design but are optional:

• PMod USBUART (if serial console is desired)

• PMod 8LD (as GPIO output)

The following software is required, the installation is outlined in this chapter:

• RISC-V GCC - to compile the firmware

• Intel Quartus Prime (Lite) - to build the hardware design

• Quartus Programmer - to program the FPGA (usually included in Quartus Prime)

3.1 RISC-V GCC Toolchain

This guide installs the toolchain under /opt/riscv, this path is configurable. For other Linux distributions
the toolchain can be installed similarly. For more information, please visit the official RISC-V GNU Compiler
Toolchain repository.

Note: To use the RISC-V GCC toolchain on Windows the Windows Subsystem for Linux is recommended.
The guide for Ubuntu then applies.

The first step is to download the prerequisites. Open a terminal window and enter the following command:

Chapter 3. Requirements Page 5 of 12

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://docs.microsoft.com/en-us/windows/wsl/install

MCXL Reference Designs User Guide

sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev \
libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool \
patchutils bc zlib1g-dev libexpat-dev

Navigate to a temporary directory and clone the toolchain from github:

git clone https://github.com/riscv/riscv-gnu-toolchain
cd riscv-gnu-toolchain

Configure the build for the available architectures and run make to start the build:

Note: This step may take a while.

./configure --prefix=/opt/riscv --with-multilib-generator="rv32i-ilp32--;"\
"rv32im-ilp32-rv32ima-;rv32imc-ilp32-rv32imac-;rv32imafc-ilp32f--"
sudo make

Add the build tools to the path by opening ~/.bashrc (or equivalent) and add the line:

export PATH="$PATH:/opt/riscv/bin"

Finally reload the terminal with the following command:

source ~/.bashrc

Now the RISC-V tools are available under riscv64-unknown-elf-(*)

3.2 Intel Quartus Prime

To synthesize the hardware design Intel Quartus Prime is required. The lite edition is available from Intel
free of charge, please make sure that the Cyclone 10 LP Device support is included.

The MCXL SoM is programmed via JTAG through a Quartus Prime compatible USB-Blaster connected to
the JTAG Header on the module.

3.3 Serial Console

The reference design implements UART routed to PMod P14 compatible with the Pmod USBUART. To use
the serial communication to the FPGA a console emulator is required.

Chapter 3. Requirements Page 6 of 12

https://fpgasoftware.intel.com/?edition=lite

MCXL Reference Designs User Guide

3.3.1 Linux

One can install picocom on Linux and add the user to the dialout-group using the following commands on
the terminal:

sudo apt install picocom
sudo usermod -a -G dialout $USER

Note: Changes of the user’s groups may require a logout or reboot.

The UART on the FPGA uses a fixed baudrate of 115200, connect to the serial port with the following
command. ttyUSB0 refers to the default device name, it may be different per user.

picocom -b 115200 /dev/ttyUSB0

3.3.2 Windows

On Windows the serial port is available as COMx device and can be used with tools such as PuTTY or
TeraTerm.

Chapter 3. Requirements Page 7 of 12

MCXL Reference Designs User Guide

CHAPTER

FOUR

PROGRAMMING THE DEMOS

Note: The directory Prebuild contains a precompiled firmware image as well as a prebuild FPGA image.
These may be used to skip the corresponding steps in this chapter.

4.1 Downloading the Sources

Open a terminal and use the following command to download the git repository:

git clone https://github.com/ARIES-Embedded/mcxl-reference-designs

4.2 Downloading the HyperBus IP

The IP Core to interface with the HyperBus is provided by SLL with a time-limited license for ARIES
customers. Download the sources from ARIES downloads and merge the content of the archive with the
respective directories of the repository.

cd mcxl-reference-designs
wget downloads.aries-embedded.de/products/Spiderboard/software/mcxl-sll-hyperbus.zip
unzip mcxl-sll-hyperbus.zip

4.3 Compiling the Firmware

Navigate to the respective project directory corresponding to the module (mcxl_h_ethernet,
mcxl_h_ethernet_hyperbus, mcxl_s_ethernet). Then navigate to the subdirectory riscv_freertos_network,
open a terminal there and call make. The RISC-V-GCC will create the firmware in the subdirectory out
and copy the bootrom_vex.mif file to the FPGA project directory.

Chapter 4. Programming the Demos Page 8 of 12

downloads.aries-embedded.de/products/Spiderboard/software/mcxl-sll-hyperbus.zip

MCXL Reference Designs User Guide

4.4 Building the Hardware Design

Start Intel Quartus Prime and open the respective project. Press Start Compilation and Quartus will
build the FPGA image and generate the programming files in the subdirectory output_files/

4.5 Programming the FPGA

Open the Quartus Programmer and under Hardware Setup. . . select the USB-Blaster. Then select the
.sof file either in the project subdirectory output_files/ or in the directory with the prebuild files and
press Start.

Chapter 4. Programming the Demos Page 9 of 12

MCXL Reference Designs User Guide

CHAPTER

FIVE

REFERENCE DESIGNS

The reference design implements the following IP cores:

• RISC-V Core VexRiscv (RV32IM)

• 128 KiB On-Chip RAM

• UART

• GPIO

• Intel TSE MAC (Gigabit Ethernet)

– Custom Avalon-Streaming to Avalon-MemoryMapped Bridge

The hyperbus-design also implements:

• SLL MBMC (HyperBus) interfacing with:

– 2x 64 MiB HyperRAM

– 2x 256 MiB HyperFlash

5.1 FPGA Design

The top-level file for the FPGA design is MCXL.vhd and provides the port declaration to interface with
the physical pins of the device. It also declares and instantiates the Qsys component. The MCXL provides
a 25 MHz clock for the FPGA.

5.1.1 Intel Platform Designer Qsys

The Intel Platform Designer implements the RISC-V system. The CPU core and peripheral devices are
instantiated, configured and communicate via the Avalon Interconnect. Each device occupies a memory
range in the address space, the interconnect will automatically resolve the access signals.

Chapter 5. Reference Designs Page 10 of 12

MCXL Reference Designs User Guide

5.1.1.1 RISC-V Core VexRiscv

The VexRiscv core is configured as RV32IM core (without caches) but can be also configured as RV32I
without cache or as RV32IM, RV32IMAC, RV32IMAFC with 4KiB instruction and data caches. For different
configurations the Makefile of the firmware needs to be updated. The line ARCH := rv32im should reflect
the capabilities of the core, if the RV32IMAFC configuration is chosen, the ABI should also be set to ilp32f.
When using a configuration with caches, the IO region parameter should be configured to include all IO
devices. As alternative to VexRiscv the SERV core or PicoRV32 core can be implemented, see the riscv-on-
max10 repository for more information.

Parameter Description
Reset Vector Address loaded into the program counter when the core starts.
Exception Vector Address loaded into the program counter when an exception (interrupt or

trap) occurs.
IO Region Begin First (inclusive) address of the uncached region; volatile memory such as

registers of external modules are required to be in this region. Does not
have an effect if no caches are used.

IO Region End Last (inclusive) address of the uncached region. Does not have an effect if
no caches are used.

Core Configuration Specifies the implemented instruction set and caches.

5.1.1.2 Peripherals

The Qsys System implements a UART, GPIO and a On-Chip Memory core. The Memory core provides the
VexRiscv with 128 KiB RAM and is initialized with the firmware. The UART core is routed to the PMod
P14 connector and provides a serial interface to the RISC-V core. The GPIO core PMod connectors TODO

5.1.1.3 Ethernet

The FPGA implementation for ethernet consists of the Intel Triple Speed Ethernet (TSE) MAC configured
for gigabit operation and a custom Streaming-To-MemoryMapped AvalonST2MM core, which connects the
TSE to the VexRiscv core and can buffer 2048 bytes, i.e. one ethernet packet, for both transmit and receive
direction. The TSE can buffer further 128 KiB while the AvalonST2MM is occupied.

5.2 Firmware

The firmware for the RISC-V core is build for bare-metal execution. The mcxl_[hs]_ethernet design stores
the firmware binary with all sections in the on-chip memory. While the Crt zero-initializes the bss section,
changes to variables in the data section are not restored on reset. As such a proper reset requires the
reprogramming or restart of the FPGA via programmer or configuration device.

For the mcxl_h_ethernet_hyperbus project with HyperBus enabled the linker-script includes hyperram0
as available memory. The on-chip memory then is declared as read-only (though it can still be written)
and contains the text section (program code) and the data section as load address space. The hyperram0
provides space for the bss section and hosts the data section as virtual address space. On startup the Crt
reads the data section from the on-chip memory and copies it to the HyperRAM, the firmware uses the data
section stored in the HyperRAM when accessing initialized variables. Additionally the Crt also initializes
the bss section with zero. Since the firmware does not modify the content of the on-chip memory, the core
can be reset via soft reset.

Chapter 5. Reference Designs Page 11 of 12

https://github.com/ARIES-Embedded/riscv-on-max10
https://github.com/ARIES-Embedded/riscv-on-max10

MCXL Reference Designs User Guide

After core initialization the Crt calls the main function and starts the user firmware. The provided examples
implement FreeRTOS+TCP to simplify access to the ethernet functionality of the board. For demonstration
purposes the firmware prints firmware information and loopback on UART, bounces LEDs on PMod P15 to
P18 and connects to network using DHCP to provide basic functionality such as ping response.

FreeRTOS was modified to provide task switching in a compliant manner, functions to access the task
control block from the system tick handler were added. The reference design with FreeRTOS+TCP
depend on a number of configuration parameters and function stubs which may be modified for their intended
functionality. The files FreeRTOSConfig.h and FreeRTOSIPConfig.h contain the standard configuration for
FreeRTOS and the TCP stack respectively. The TCP stack uses DHCP to acquire an IP address but will
fallback to a predefined configuration upon failure. This configuration is found in Config.h.

Chapter 5. Reference Designs Page 12 of 12

