
RISC-V on MAX10 User Guide

RISC-V on MAX10 User Guide

Version: 1.0

Created on: Feb 14, 2022

Created by: Johannes Schwenk

Page 1 of 20

© ARIES Embedded GmbH.
The information contained in this document is strictly confidential.

This document may not be copied, reproduced, translated, changed or
distributed without the written approval of ARIES Embedded GmbH.

RISC-V on MAX10 User Guide

CONTENTS:

1 About this manual 4
1.1 Imprint . 4
1.2 Disclaimer . 4
1.3 Copyright . 5
1.4 Registered Trademarks . 5
1.5 Care and Maintenance . 5
1.6 Change Log . 5

2 Introduction 6
2.1 Cores . 6

2.1.1 RISC-V Core Benchmark . 7
2.1.1.1 Dhrystone . 7
2.1.1.2 CoreMark . 7

2.1.2 FPGA Resource Usage . 7

3 Requirements 8
3.1 MAX10 SoMs . 8
3.2 Reference Designs . 8
3.3 RISC-V GCC . 9
3.4 Intel Quartus Prime . 9
3.5 OpenOCD . 10

3.5.1 Linux . 10
3.5.2 Windows . 10

3.6 Serial Console . 11
3.6.1 Linux . 11
3.6.2 Windows . 11

4 Programming the Demos 13
4.1 Compiling the Firmware . 13
4.2 Building the Hardware Design . 13
4.3 Programming the FPGA . 14

4.3.1 Quartus Programmer . 14
4.3.2 OpenOCD . 14

5 Reference Design 15
5.1 FPGA Design . 15

5.1.1 Intel Platform Designer (Qsys) . 16
5.1.1.1 SERV . 16
5.1.1.2 PicoRV32 . 16
5.1.1.3 VexRiscv . 17

CONTENTS: Page 2 of 20

RISC-V on MAX10 User Guide

5.2 C-Firmware . 17
5.2.1 Common Files . 17
5.2.2 FreeRTOS . 18

5.3 Modifying the Examples . 18
5.3.1 Adding a lightweight printf-library . 18
5.3.2 Adding a second Uart to Qsys . 19

CONTENTS: Page 3 of 20

RISC-V on MAX10 User Guide

CHAPTER

ONE

ABOUT THIS MANUAL

1.1 Imprint

Adress:

ARIES Embedded GmbH

Schöngeisinger Str. 84

D-82256 Fürstenfedbruck

Germany

Phone:

+49 (0) 8141/36 367-0

Fax:

+49 (0) 8141/36 367-67

1.2 Disclaimer

ARIES Embedded does not guarantee that the information in this document is up-to-date, correct, complete
or of good quality. Liability claims against ARIES Embedded, referring to material or non-material related
damages caused, due to usage or non-usage of the information given in this document, or due to usage of
erroneous or incomplete information, are exempted, as long as there is no proven intentional or negligent
fault of ARIES Embedded. ARIES Embedded explicitly reserves the rights to change or add to the contents
of this Preliminary User Guide or parts of it without notification.

Chapter 1. About this manual Page 4 of 20

RISC-V on MAX10 User Guide

1.3 Copyright

This document may not be copied, reproduced, translated, changed or distributed, completely or partially
in any form without the written approval of ARIES Embedded GmbH.

1.4 Registered Trademarks

The contents of this document may be subject of intellectual property rights (including but not limited to
copyright, trademark, or patent rights). Any such rights that are not expressly licensed or already owned
by a third party are reserved by ARIES Embedded GmbH.

1.5 Care and Maintenance

• Keep the device dry. Precipitation, humidity, and all types of liquids or moisture can contain minerals
that will corrode electronic circuits. If your device does get wet, allow it to dry completely.

• Do not use or store the device in dusty, dirty areas. Its moving parts and electronic components can
be damaged.

• Do not store the device in hot areas. High temperatures can shorten the life of electronic devices,
damage batteries, and warp or melt certain plastics.

• Do not store the device in cold areas. When the device returns to its normal temperature, moisture
can form inside the device and damage electronic circuit boards.

• Do not attempt to open the device.

• Do not drop, knock, or shake the device. Rough handling can break internal circuit boards and fine
mechanics.

• Do not use harsh chemicals, cleaning solvents, or strong detergents to clean the device.

• Do not paint the device. Paint can clog the moving parts and prevent proper operation.

• Unauthorized modifications or attachments could damage the device and may violate regulations gov-
erning radio devices.

1.6 Change Log

Revision Date Revised Comment
1.0 14.02.2022 js Initial creation

Chapter 1. About this manual Page 5 of 20

RISC-V on MAX10 User Guide

CHAPTER

TWO

INTRODUCTION

The reference designs demonstrate the implementation of an open-source RISC-V core running FreeRTOS
and interfacing with different peripherals. This guide shows how to install the neccessacy requirements and
how to run and modify the RISC-V examples on the MX10 and SpiderBoard SoMs. The examples are also
suitable as starting point for developement.

2.1 Cores

The following open source cores are available as Intel Platform Designer (Qsys) Component:

• Serv

The Serv core by Olof Kindgren is a bit-serial RV32I core. By only handling one bit at a
time, the core trades performance for its small size. An additional memory-mapped interrupt
controller is connected to the core to enable external, software and configurable timer inter-
rupts similar to as described in the RISC-V specification. As such the Serv is fully capable
of running FreeRTOS.

• PicoRV

The PicoRV32 core by Claire Wolf implements the RV32I[M][C] architecture. The core
connects to the avalon-interconnect via its native memory interface. The external PCPI, look-
ahead and trace interface are not connected. The core implements its own native interrupt
controller.

• VexRiscv

The VexRiscv core by SpinalHDL is written in Scala, highly configurable and builds to Verilog
via SpinalHDL. Five different variants were built and merged into one component to allow
specification of the supported architecture. RV32I[M] and RV32IM[A[F]C] with data and
instruction caches are available. Similar to the Serv a memory mapped interrupt controller
is implemented.

Chapter 2. Introduction Page 6 of 20

https://github.com/ARIES-Embedded/riscv-on-max10
https://github.com/olofk/serv
https://github.com/YosysHQ/picorv32
https://github.com/SpinalHDL/VexRiscv

RISC-V on MAX10 User Guide

2.1.1 RISC-V Core Benchmark

The following tests were conducted on the MX10-U (with 10M50DAF256I7G, Speedgrade 7) using Quartus
20.1 Lite.

Quartus Compilation effort was set to Performance (Aggressive) with most options that increase max-
imum frequency turned on. The clock frequency of the FPGA system was 25 MHz. The benchmarks were
compiled using GCC version 11.1.0 with the compiler flags -O3

2.1.1.1 Dhrystone

Core @ 25 MHz Dhrystones/s DMIPS DMIPS/MHz fmax DMIPSmax
Serv (RV32I) 1262 0.718 0.028 135.8 MHz 3.938
PicoRV Small (RV32I) 13347 7.596 0.303 130.3 MHz 40.263
PicoRV (RV32IM) 14705 8.369 0.334 123.9 MHz 42.250
VexRiscv (RV32IM) 48449 27.574 1.102 86.8 MHz 97.824
VexRiscv+Cache (RV32IMAFC) 61950 35.258 1.410 77.3 MHz 112.626

2.1.1.2 CoreMark

Core @ 25 MHz Iterations CoreMark CM/MHz fmax CoreMarkmax
Serv (RV32I) 10 0.590 0.024 135.8 MHz 3.123
PicoRV32 Small (RV32I) 110 6.351 0.254 130.3 MHz 32.705
PicoRV32 (RV32IM) 200 16.577 0.663 123.9 MHz 81.774
VexRiscv (RV32IM) 600 50.123 2.005 86.8 MHz 172.298
VexRiscv+Cache (RV32IMAFC) 1100 61.811 2.472 77.3 MHz 189.076

2.1.2 FPGA Resource Usage

For the resource usage statistics the Quartus Compilation effort was set to Area. The data was taken from
the fitter report.

Core Logic Cells (Total) Logic Cells (Core) M9K / Bits (Core)
Serv (RV32I) 1126 383 1 / 1152
PicoRV Small (RV32I) 2929 2523 0
PicoRV (RV32IM) 3148 2766 2 / 2340
VexRiscv (RV32IM) 3243 2404 2 / 2048
VexRiscv+Cache (RV32IMAFC) 9151 7537 21 / 131520

Note: Results are specific to exact compilation of the FPGA design and firmware, results may not be
reproducable.

Chapter 2. Introduction Page 7 of 20

RISC-V on MAX10 User Guide

CHAPTER

THREE

REQUIREMENTS

3.1 MAX10 SoMs

To run the RISC-V demos on a MAX10 board one of the following SoMs is required:

• SpiderSoM-S (10M08SAU169C8G)

• MX10-S8 (10M08DAF256C8G)

• MX10-U (10M50DAF256I7G)

To compile the firmware the RISC-V GCC toolchain is required.

To build the hardware design Intel Quartus Prime is required.

To programm the image on the board either a JTAG USB-Blaster (with Quartus Programmer) or OpenOCD
is required.

As reference for this guide Linux Ubuntu 20.04 is used, other Linux distributions may work similarly. While
the toolchain can be used on Windows only limited support is available.

3.2 Reference Designs

The first step is to to download the reference designs using git. Open a terminal window to clone the
repository with the command:

git clone https://github.com/ARIES-Embedded/riscv-on-max10

Chapter 3. Requirements Page 8 of 20

https://fpgasoftware.intel.com/?edition=lite

RISC-V on MAX10 User Guide

3.3 RISC-V GCC

This guide installs the toolchain under /opt/riscv, this path is configurable. For other Linux distributions
the toolchain can be installed similarly. For more information, please visit the official RISC-V GNU Compiler
Toolchain repository.

Note: To use the RISC-V GCC toolchain on Windows the Windows Subsystem for Linux is recommended.
The guide for Ubuntu then applies.

The first step is to download the prerequisites. Open a terminal window and enter the following command:

sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev \
libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool \
patchutils bc zlib1g-dev libexpat-dev

Navigate to a temporary directory and clone the toolchain from github:

git clone https://github.com/riscv/riscv-gnu-toolchain
cd riscv-gnu-toolchain

Configure the build for the available architectures and run make to start the build:

Note: This step may take a while.

./configure --prefix=/opt/riscv --with-multilib-generator="rv32i-ilp32--;"\
"rv32im-ilp32-rv32ima-;rv32imc-ilp32-rv32imac-;rv32imafc-ilp32f--"
sudo make

Add the build tools to the path by opening ~/.bashrc (or equivalent) and add the line:

export PATH="$PATH:/opt/riscv/bin"

Finally reload the terminal with the following command:

source ~/.bashrc

Now the RISC-V tools are available on the terminal via riscv64-unknown-elf-(*)

3.4 Intel Quartus Prime

To synthesize the hardware design Intel Quartus Prime is required. The lite edition is available from Intel
free of charge, please make sure that the MAX10 Device support is included.

To make the RISC-V cores available for the Intel Platform Designer open Quartus and under the menu Tools
select Options. There select IP Settings > Ip Catalog Search Locations and add the the following
path to the Global IP search directory, substituting the path to the repository previously cloned:

<path to repository>/Cores/**/*

The MAX10 SoM is programmed via JTAG either through the intregrated PIC microcontroller using a
Serial Vector Format (.svf) file or through a Quartus Prime compatible USB-Blaster connected to the JTAG
Header on the Spider Baseboard.

Chapter 3. Requirements Page 9 of 20

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://docs.microsoft.com/en-us/windows/wsl/install
https://fpgasoftware.intel.com/?edition=lite

RISC-V on MAX10 User Guide

3.5 OpenOCD

The PIC onboard programming solution is used in conjunction with OpenOCD. For OpenOCD, the libftdi
driver with blaster support is required.

3.5.1 Linux

On Linux the apt version usually suffices:

sudo apt install openocd

Create a bash script to programm the FPGA more conveniently. In order to do so, create the file ~/.local/
bin/mx10spider (including parent directories, should they not exist) and add the following content:

#!/bin/sh

me=$(basename $0)

if [-f "$1"]; then
openocd -c "interface usb_blaster" -c "usb_blaster_lowlevel_driver ftdi" \

-c "usb_blaster_vid_pid 0x04d8 0xefd0" -c "jtag newtap max10 tap
-irlen 10 -expected-id 0x31810dd -expected-id 0x318a0dd \
-expected-id 0x31820dd -expected-id 0x31830dd -expected-id 0x31840dd \
-expected-id 0x318d0dd -expected-id 0x31850dd -expected-id 0x31010dd \
-expected-id 0x310a0dd -expected-id 0x31020dd -expected-id 0x31030dd \
-expected-id 0x31040dd -expected-id 0x310d0dd -expected-id 0x31050dd" \
-c "init" -c "svf $1 progress" -c "shutdown"

elif ["$1" = ""]; then
echo "\tError: No file specified.\n\tUsage: $me <file.svf>"
elif ["$1" = "-h"] || ["$1" = "--help"]; then
echo "\tUtility script to start openocd and run an svf file.\n\tUsage: $me <file.svf>"
else
echo "\tFile not found: $1\n\tUsage: $me <file.svf>"
fi

Make sure the directory is included in the path variable.

Then the FPGA can be programmed via a Serial Vector Format File (.svf) using the following example
command:

mx10spider example.svf

3.5.2 Windows

For Windows OpenOCD binaries are available on the GitHub repository. Extract the content of the archive
to any directory (for example C:/openocd), then add the subdirectory bin/ to the path environment
variable. OpenOCD can be used by running a bash-emulation such as MINGW64 (for example shipped with
Git for Windows). Create the file mx10spider in the subdirectory bin/ of OpenOCD and insert the bash
script for Linux from above. Then the FPGA can be programmed in the same way as on Linux.

Chapter 3. Requirements Page 10 of 20

https://github.com/openocd-org/openocd/releases/tag/v0.11.0

RISC-V on MAX10 User Guide

3.6 Serial Console

The reference design implements UART connected via PIC-USB to the host PC. To use the serial commu-
nication to the FPGA a console emulator is required.

3.6.1 Linux

One can install picocom on Linux and add the user to the dialout-group using the following commands on
the terminal:

sudo apt install picocom
sudo usermod -a -G dialout $USER

Note: Changes of the user’s groups may require a relog or reboot.

The UART on the FPGA uses a fixed baudrate of 115200, connect to the serial port with the following
command. ttyACM0 refers to the default device name, it may be different per user.

picocom -b 115200 /dev/ttyACM0

3.6.2 Windows

On Windows the serial driver for the interface is required to be manually installed. Open the Windows Device
Manager and under Other devices select Unknown device. Verify that it is the correct device by looking
at its properties, Device instance path should read something similar to USB\VID_04D8&PID_EFD0&MI_02\
...

Right-click on the Unknown device and select Update driver. In the following dialog select Browse
my computer for drivers, then Let me pick from a list of available drivers on my computer. In
the list select Ports (COM & LPT), on the next page select Manufacturer Microsoft and Model USB
Serial Device, finally on the message box select Yes to install the driver.

Chapter 3. Requirements Page 11 of 20

RISC-V on MAX10 User Guide

Now the serial port is available as a Windows COM device and can be used with tools such as PuTTY or
TeraTerm.

Chapter 3. Requirements Page 12 of 20

RISC-V on MAX10 User Guide

CHAPTER

FOUR

PROGRAMMING THE DEMOS

Note: The directory Prebuild contains a precompiled firmware image aswell as a prebuild FPGA image.
These can be used to skip the corresponding steps in this chapter.

4.1 Compiling the Firmware

Navigate to the project directory corresponding to the module (Spider_S, MX10_S8, MX10_U). The RISC-
V firmware is available as a simple, standalone version (RiscvSimple) or using FreeRTOS (RiscvFreeRTOS).
Both versions demonstrate the same functionality, a binary counter on PMod J3 and loopback on UART.
Open a terminal and navigate to either firmware and call make

4.2 Building the Hardware Design

Copy the file bootrom.mif from either the previous step or from the precompiled files to the Quartus
Project directory corresponding to the module, then start Intel Quartus Prime and open the project. Press
Start Compilation and Quartus will build the FPGA image and generate the programming files in the
subdirectory output_files/

Chapter 4. Programming the Demos Page 13 of 20

RISC-V on MAX10 User Guide

4.3 Programming the FPGA

The MAX10 FPGA supports programming the SRAM cells integrated into the FPGA fabric, this configura-
tion is lost whenever the FPGA is powered off and as such is useful for testing and debugging. The MAX10
FPGA also includes internal non-volatile FLASH to store a configuration image, which on powerup will be
loaded into the SRAM. This is usually used for deployment.

The FPGA image can be programmed either with Quartus Programmer using the output file *.svf to target
the SRAM or *.pof to target the FLASH or with OpenOCD using the output file *.svf to target the SRAM
or *_pof.svf to target the FLASH.

4.3.1 Quartus Programmer

Open the Quartus Programmer and under Hardware Setup. . . select the USB-Blaster. Then select the
either the .sof or .pof file in the project subdirectory output_files/ or the file corresponding to the module
in the directory with the prebuild files and press Start.

4.3.2 OpenOCD

Open a terminal and navigate to the project subdirectory output_files/ or the directory with the prebuild
files. Run one of the following commands (substitute <image> with the name of the file corresponding to
the module):

To programm the SRAM
mx10spider <image>.svf

To programm the FLASH
mx10spider <image>_pof.svf

Chapter 4. Programming the Demos Page 14 of 20

RISC-V on MAX10 User Guide

CHAPTER

FIVE

REFERENCE DESIGN

For each of the supported MAX10 SoMs a reference design is included.

The reference design implements:

• RISC-V 32-bit Core

– PicoRV32 RV32IM (SpiderSoM-S)

– VexRiscv RV32IM (MX10-S)

– VexRiscv+Cache RV32IMAFC (MX10-U)

• On-Chip Memory (32KB, 64KB MX10-U) initialized with the firmware

• UART via PIC-USB to the host PC

• GPIO Counter on PMod J2

The MX10-U design also implements:

• DDR3 Controller connected to 512 MB RAM.

5.1 FPGA Design

The top-level file for the FPGA is depending on the project Spider.vhd or MX10.vhd. The top-level file
provides the port declaration to interface with the physical pins of the FPGA, it also declares and instantiates
the Qsys component. A process sensitive on the system clock (25 MHz) uses a counter to blink the LED
on the module once per second. The RISC-V (Qsys) system provides a binary counter on PMod J2 and
loopback for the UART interface.

Chapter 5. Reference Design Page 15 of 20

RISC-V on MAX10 User Guide

5.1.1 Intel Platform Designer (Qsys)

The Intel Platform Designer implements the RISC-V system. The CPU core and peripheral devices are
instatiated, configured and communicate via the Avalon Interconnect. Each device occupies a memory range
in the address space, the interconnect will automatically resolve the access signals.

5.1.1.1 SERV

The Serv Core implements the RV32I instruction set, an integrated memory mapped interrupt controller
provides handling for external, software and timer interrupts. The interrupt controller also provides a general
purpose time register. The following configuration parameters are avilable:

Parameter Description
Reset Vector Address loaded into the program counter when the core starts.
Interrupts Number of interrupts avilable in the interrupt controller. (Range 1 - 32)
Timer Width Number of bits implemented for the timer counter. (Range 33 - 64)

5.1.1.2 PicoRV32

The PicoRV32 core can be configured as RV32E, RV32I, RV32IC, RV32IM, or RV32IMC core and implements
a native custom interrupt controller. The following configuration parameters are avilable.

Parameter Description
Enable Counters Enables support for RDCYCLE[H], RDTIME[H] and RDINSTRET[H] instruc-

tions.
Enable Counters (64bit) Enables support for RDCYCLEH, RDTIMEH and RDINSTRETH instructions.
Enable Registers x16 to x31 Enables support for registers x16 to x31. When disabled the core uses the

RV32E instruction set.
Dual Port Registers Increases performance for register access, but may increase the size of the

core.
Two Stage Shift Speeds up the shift operation, but increases the size of core slightly.
Barrel Shifter Implements the shift operation by using a barrel shift, which is faster, but

further increases the size of the core.
Two Cycle Compare Relaxes the longest data path and improves timing, but adds an additional

clock cycle for branch instructions.
Two Cycle ALU Improves timing, but adds an additional clock cycle for instructions that

use the ALU.
Compressed ISA Enables support for the compressed (C) instruction set.
Catch Address Misalign Enables circuitry for catching misaligned memory accesses.
Catch Illegal Instruction Enables circuitry for catching illegal instructions.
Enable MUL Enables support for the MUL[H[SU|U]] instructions.
Enable Fast MUL Increases performance for multiplication, but increases the size of the core.
Enable DIV Enables support for the DIV[U]/REM[U] instructions.

Chapter 5. Reference Design Page 16 of 20

RISC-V on MAX10 User Guide

Parameter Description
Enable Interrupts Enables the internal interrupt controller.
Masked IRQ A 1 bit in this bitmask permanently disables the corresponding interrupt.
Latched IRQ A 1 bit in this bitmask latches the interrupt signal (edge-triggered) instead

of operating on level sensitive interrupts.
Reset Vector Address loaded into the program counter when the core starts.
Interrupt Vector Address loaded into the program counter when an interrupt or execution

error occurs.

5.1.1.3 VexRiscv

The VexRiscv core can be configured as RV32I, RV32IM without caches or as RV32IM, RV32IMAC,
RV32IMAFC with 4KB instruction and data caches.

Parameter Description
Reset Vector Address loaded into the program counter when the core starts.
Exception Vector Address loaded into the program counter when an exception (interrupt or

trap) occurs.
IO Region Begin First (inclusive) address of the uncached region; volatile memory such as

registers of external modules are required to be in this region. Does not
have an effect if no caches are used.

IO Region End Last (inclusive) address of the uncached region. Does not have an effect if
no caches are used.

Core Configuration Specifies the implemented instruction set and caches.

5.2 C-Firmware

The C firmware by default will output a binary counter to the GPIO and loopback every character received
on Uart. The internal counter (or in case of the Serv the counter of the interrupt controller) will be read to
increment or decrement the binary counter value every 32th of a second. The timer will also be configured
to provide an interrupt every 2 seconds. The corresponding interrupt handler changes the direction of the
binary counter. An additional interrupt handler triggered on Uart receive will loop back the characters
received.

5.2.1 Common Files

File Description
Hal.c, Hal.h, Hal.S Hardware Abstraction Layer, provides interface to the core hardware such

as timers and interrupts
Crt.S C Runtime, start-up code that initializes the core and invokes main
FpgaConfig.h, Fpga-
Config.c

Configuration file that describes the Qsys RISC-V system

Main.c Entry point for the C firmware
Makefile Build file for make
RiscvDef.h Definitions for RISC-V constants
Uart.c, Uart.h Software description and driver file for Uart
bin2mif.py Python script, converts the binary output to a memory initalization file
link.ld Linker script, instructs the linker on how to assemble the binary.

Chapter 5. Reference Design Page 17 of 20

RISC-V on MAX10 User Guide

5.2.2 FreeRTOS

For FreeRTOS the RISC-V specific files have been moved to the subdirectory FreeRTOS/portable. Timer
and software interrupts are dedicated to FreeRTOS to provide context switching. To modify the reference
to the current task, two additional functions (void StoreStackPointerInCurrentTCB(uintptr_t stack)
and uintptr_t LoadStackPointerFromCurrentTCB()) were added in task.h and tasks.c.

5.3 Modifying the Examples

The reference designs provide an ideal starting point for the development of a RISC-V enabled FPGA project.
The following sections show how to modify the FPGA design and the C firmware.

5.3.1 Adding a lightweight printf-library

An open source implementation of a printf library is available at https://github.com/eyalroz/printf. Copy
the files printf.c and printf.h from the src subdirectory to the RISC-V firmware directory. Then create a
new file called printf_impl.c with the following code inside:

include "printf.h"
include "FpgaConfig.h"

void _putchar(char character) {
if (character == '\n'){

UartPut(g_Uart, '\r');
}
UartPut(g_Uart, character);

}

The library can now be used in any file by including the header:

include "printf.h"

Replace the beginning of the main-function with the following code snippet for demonstrative purpose:

int main() {

// Greetings
printf_("\n\n* * * Printf Demo - %s * * *\n", DBUILD_DATE);

// Set GPIO to output.
g_Pio->direction = 0xffffffff;

Chapter 5. Reference Design Page 18 of 20

https://github.com/eyalroz/printf

RISC-V on MAX10 User Guide

5.3.2 Adding a second Uart to Qsys

Note: This section uses the Spider_S project, there may be small differences between projects that have
to be transfered.

Open the Qsys system in Intel Platform Designer. Search in the IP Catalog for “uart”, select the UART
(RS-232 Serial Port) Intel FPGA IP and press Add.

The default settings are suitable for the Uart core. Connect the signals to the interconnect, for the SERV
and the VexRiscv core make sure to connect the s1 signal to the data bus. Select an unoccupied memory
range for the Memory Mapped, this example sets the base address to 0x00010300. Export the Conduit signal
to the top-level file.

The new Uart also has to be added in the top-level file, in order to do so select the menu Generate in
the Platform Designer and then Show Instantiation Template. In the dropdown menu HDL Language
select VHDL. The two new signals are uart2_rxd and uart2_txd. Open the top-level file (MX10.vhd or
Spider.vhd) in Quartus and modify the component declaration:

component qsys0 is
port (

clk_clk : in std_logic;
reset_reset_n : in std_logic;
gpio_export : inout std_logic_vector(31 downto 0) := (others => 'X');
uart_rxd : in std_logic;
uart_txd : out std_logic;
uart2_rxd : in std_logic;
uart2_txd : out std_logic

);
end component qsys0;

Chapter 5. Reference Design Page 19 of 20

RISC-V on MAX10 User Guide

Modify the component instantiation, this example routes the Uart signals to PMod:

u0 : component qsys0
port map (

clk_clk => clk25,
reset_reset_n => resetn,
gpio_export => gpio,
uart_rxd => uart_rx,
uart_txd => uart_tx,
uart2_rxd => pmod_j3(1),
uart2_txd => pmod_j3(0)

);

To use the Uart from the RISC-V firmware open the file FpgaConfig.h

Add the memory address and interrupt number as specified in Intel Platform Designer:

define MEMADDR_UART2 ((uintptr_t)(0x00010300))
define IRQ_UART2 1

Declare the Uart struct:

extern Uart* g_Uart2;

Open the file FpgaConfig.c and provide the definition for the struct:

Uart* g_Uart2 = (Uart*)(MEMADDR_UART2);

Now the second Uart is available to be used in the firmware:

int main() {

// Greetings
UartWrite(g_Uart, "\n\n* * Example Demo - "DBUILD_DATE" * *\n");
UartWrite(g_Uart2, "Hello World\n");

Chapter 5. Reference Design Page 20 of 20

